

PE: Spung Force
$u(x)=\frac{1}{2} k x^{2}$
$u(P)=-\int_{P_{0}}^{P} \vec{F} \cdot d \vec{r}+u\left(P_{0}\right)$
$E=k+u$
$u(x=0)=0 x$
$=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}$
$u(x)=-\int_{0}^{x} F_{x}\left(x^{\prime}\right) d x^{\prime}$
$=$ constant.
Conservative Fonce
Ital ME is conserved!


$$
=-\int_{0}^{x}\left(-k x^{\prime}\right) d x^{\prime}
$$

$$
\begin{align*}
& \text { PE Gravitatomal (Cineral) } \\
& F_{g}=-\frac{G m M_{E}}{r^{2}} \hat{\pi} \quad \text { Eath-Obyect } \\
& u(P)=-\int_{P_{0}}^{\int_{2}^{2}} \vec{F} \cdot d \vec{r}+u\left(P_{0}\right) \\
& \text { (ME) } F_{g} \leftarrow^{m} \rightarrow \hat{\pi}  \tag{2}\\
& U(x)=-\frac{G m M E}{r} \\
& U(r)=-\left.\frac{G m M_{E}}{r^{\prime}}\right|_{\infty} ^{r}+U\left(P_{5}\right) \\
& E=k+u \\
& =\frac{1}{2} m v^{2}-\frac{G_{m} m_{E}}{r} \\
& u(r)=\int_{\infty}^{\pi} \frac{G \operatorname{G} m M_{e} d r^{\prime}}{Y^{2}}+u\left(P_{0}\right) \\
& \text { Let } U\left(P_{0}\right)=U(\infty)=0 \\
& \text { Total ME is corssoved! }
\end{align*}
$$

PE Guevitatorad (Cinal).
$F_{g}=-\frac{G m M E}{h} \hat{\pi}$ Eail-Obyeet
$u(r)=-\int_{p_{0}}^{2} \vec{F} \cdot d \vec{r}+u\left(P_{0}\right)$
$\begin{array}{ll}M_{E} \quad F_{g} \leftarrow{ }^{m} \rightarrow \hat{r} & U(r)=-\frac{G_{m} M E}{r} \\ U(r)=-\left.\frac{G m M}{r^{2}}\right|_{\infty} ^{r}+U\left(P_{B}\right) & E=K+u \\ \text { et } U\left(P_{B}\right)=U(0)=0 & =\frac{1}{2} m v^{2}-\frac{G_{m} M_{E}}{r}\end{array}$


Focco and Potantial Envy.
Force $\frac{F(x)}{m g} \hat{\jmath} \frac{u_{l(x)}^{m g y}}{x_{0}} \frac{F\left(x_{0}\right)}{-m=0} \hat{E_{2}-E_{1}=W_{\text {Fruction }}}$
Gentinnem $m g \hat{\jmath} \quad m g y \quad y=0 \quad-m g \hat{\jmath}$
Guact $(i x) \frac{-G M M E}{r^{2}} \hat{r} \quad \frac{-(i m m e}{r} \quad r=\infty \quad 0$
Sping $-k x \hat{\imath} \quad 1 / 2 k x^{2} \quad x=0 \quad 0$
Non-Goms Freels

Suphpostion
Suroual Froce: $\vec{F}_{1}, \overrightarrow{F_{2}}, \overrightarrow{F_{3}}$, etc
$W_{\text {rotal }}=\int \vec{F}_{1} \cdot \vec{r}+\int \vec{F}_{2} \cdot d \vec{r}+\int \vec{F}_{3} \cdot d \vec{r}$
$W_{\text {Total }}: \int \vec{F}_{R} \cdot d \vec{r} \quad \vec{F}_{R} \equiv$ Prsultain Foce.
$\therefore k_{i}+\sum u_{i}=k_{p}+\sum u_{f}$
Tolaf AE,

$$
u_{\text {TSAQ }}=u_{1}+u_{2}+u_{3}+\cdots
$$

Example Simple Pendulum
$u(\theta)=m g L(1-\cos \theta)$
$E=k+U$
$=\frac{1}{2} m v^{2}+m g l(1-\cos \theta)$
For max angle $\theta=\theta_{0} \Rightarrow V=0$
$E_{0}=m g L\left(1-\cos \theta_{0}\right)$


$$
\begin{aligned}
& \therefore m g L\left(1-\cos \theta_{0}\right)=\frac{1}{2} m v^{2}+m g L(1-\cos \theta) \\
& v^{2}=2 g L\left(\cos \theta-\cos \theta_{0}\right) \\
& \text { At bottom } \theta=0 \\
& v_{B}=\sqrt{2 q L\left(1-\cos \theta_{0}\right)} \\
& \text { At } \theta=\theta_{0} r=0!
\end{aligned}
$$

Example
Drop block in from light H
Q. What is max compression of sprung?

Hefoce cons. (gravity + spring)
$E=K+u=$ concurred.
Pos 1: $v_{1}=0 ; k_{1}=0$
M $T_{i}=0$
$k_{1}+u_{1}=k_{2}+u_{1}$
(4)

Pos 2. $v_{2}=0, K_{2}=0$

$0+m g H=0-m g y+\frac{1}{2} k y^{2}$
$y=\frac{1}{2}\left[\frac{2 m g}{k} \pm\left(\frac{2 m g}{k}\right)^{2}+\frac{8 m g h}{k}\right]$


Example Sumple Pondulum

$$
\begin{aligned}
u(\theta) & =m g L(1-\cos \theta) \\
E & =k+U \\
& =\frac{1}{2} m v^{2}+m g L(1-\cos \theta)
\end{aligned}
$$

For max angle $\theta=\theta_{0} \Rightarrow v=0$ : $E_{0}=m g L\left(1-\cos \theta_{0}\right)$


Example: Bbok+Spung + Frictern:
Macs rulkeard at $x_{A}$ with $v_{A}=0$ Sereng is stretched $A$ Maro meres to left
What is veloaty $V_{B}$ at $x=x_{B}$ ?
Foce of friction $f=\mu_{k} N=\mu_{k} n g$.
Wakdre fy ' $f$ ': $W_{f}=\int_{A_{A}}^{x_{B}} \vec{f} \cdot \overrightarrow{d x}=\mu_{k} M g\left(x_{B}-x_{A}\right)$

Energy Cons ared non-cons froce.

$$
\begin{aligned}
& \frac{1}{2} m v_{B}^{2}+\frac{1}{2} k x_{B}^{2}-\left[\frac{1}{2} m v_{A}^{2}+\frac{1}{2} k x_{A}^{2}\right]=W_{F}=\mu_{k} m g\left(x_{B}-x_{A}\right) \\
& \frac{1}{2} m v_{B}^{2}=\underbrace{\frac{1}{2} k\left(x_{A}^{2}-x_{B}^{2}\right)}_{>0}+\underbrace{\mu_{B} m g\left(x_{B}-x_{A}\right)}_{<0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Exampe Spungfoce } \\
& u(x)=\frac{1}{2} k x^{2} \\
& F_{x}=-\frac{\partial u}{\partial x}=-k x \\
& F_{y}=\frac{-\partial u}{\partial y}=0
\end{aligned}
$$



$$
\begin{aligned}
& \text { Example } \\
& u(x, y)=A x^{2} y^{2} \\
& F_{x}=-\frac{\partial u}{\partial x}=-2 A x y^{2} \\
& F_{y}=-\frac{\partial u}{\partial y}=-2 A x^{2} y .
\end{aligned}
$$

