

$$
\frac{\text { Highet Paint: }}{T=m\left(\frac{v^{2}}{R}-g\right)}=\pi
$$

$$
\text { Let } v=V_{k} \text { when } T=0
$$

$$
0=m\left(\frac{v_{s}^{2}}{R}-g\right)
$$

$$
f=\frac{1 k}{\sqrt{R g}} \quad \text { o) } \quad a_{1}=3_{k}
$$

lanestalloud speed!

$v=15 \mathrm{~m} / \mathrm{s}$ conct.

Wook and Enengy:
Face \rightarrow accilenation
\rightarrow veloaty and pooitert
Fore \times Displacument $=$ Wonk
Maos \times Veloate ${ }^{2}=$ Kinetuc Enengy.
Wok $+K E=$ Work-Enengy Prinadinle
\Rightarrow Analagoues to Nouston's 2l
\Rightarrow Analagoues to Nouston's 2hd (av).

Tovce x stume Impube \rightarrow (ons) Momenion.
Foce x Position: Torque $\rightarrow \mathrm{Como}_{\text {o }}$ of Ang. Mom
Cons Laws \leftrightarrows Symmetby
Norwi $\leftrightarrow I_{\text {vilnanof }}$ o Spack
Enugh \rightarrow Inv. Tamos m Time
Ang. inms \longrightarrow IWT to Rofations

- Constant Force
$W=F_{x} \Delta x$
\uparrow Trese on patiderest
Wak done
$[W]=N \cdot M=$ Indeo.

If:
W>0 Facetbisp sion do. W<0 Fouct-Pisp oppayte $W<0$ Wakdre by
particle!!

Several Forceo Supaposition

- Add effedo clue to each firce

Wok dypends on Tnamo of Ref.

$$
\Delta y=0, \quad 10=0
$$

Elents Fant

Work-Vavalle Force
$F_{x}=F_{x}(x)$ Function $f x$.
What is $W(x: a \rightarrow x=b)$

$$
\begin{aligned}
\Delta(a)_{i} & =F_{i}\left(x_{i}\right) \Delta x \\
W(a \rightarrow b) & =\sum_{i} \Delta()_{i}=\sum_{i} F_{i}\left(x_{i}\right) \Delta x
\end{aligned}
$$

Lab Frame

$$
\begin{aligned}
& W=\lim _{\Delta i \rightarrow 0} \sum F_{x}\left(x_{i}\right) \Delta x \\
& W=\int_{a}^{b} \underbrace{F_{x}(x) d x}_{\text {interrand. }} \text {. Definite }
\end{aligned}
$$

- Ara brunded by curve. $F(x)$ and the limes $x=a$ ard $x=b$ and the x-axis.


```
Wat. Sprung Face
|mol 1
\(\begin{aligned} W & =\int_{a}^{b} F(x) d x \quad x=b \\ & =\int_{a}^{b}(-k x) d x=-\left.\frac{k x^{2}}{2}\right|_{a} ^{b}\end{aligned}\)
```

$W_{a \rightarrow b}=-k\left(b^{2}-a^{2}\right)$
Wat done en sprig.
Area

$$
\int_{x=-a}^{b} F(x) d x=-\left.\frac{k x^{2}}{2}\right|_{-a} ^{b}
$$

$$
=\frac{-k}{2}\left(b^{2}-a^{2}\right)
$$

Net Area is the same!

Take limit \rightarrow add up $\Delta x \rightarrow 0$
$W=\int_{P_{1}}^{P_{t}} \vec{F} \cdot d \vec{r} \quad($ hanc-Int $)$
$W=0$ if $\vec{F} \perp \vec{r}$
$\overrightarrow{k N}=\Delta x \hat{i}+\Delta y \hat{j}+\Delta z \hat{k}$
$W=F_{x} \Delta x+F_{y} \Delta y+F_{7} \Delta z$

Lecture 12, Blackboard \#5

$$
\begin{aligned}
& \text { Wak. spung Foce } \\
& \text { hmon-| } \\
& W=\int_{a}^{b} F(x) d x \quad x=b \\
& =\int_{a}^{b}(-k x) d x=-\left.\frac{k x^{2}}{2}\right|_{a} ^{b}
\end{aligned}
$$

Exampt Work on Antronaut

$$
\begin{aligned}
& F=-\frac{G M_{E} m}{} \hat{r} \\
& W=-\int_{R_{E}}^{3_{i} r^{2}} \frac{G M_{1} m}{r^{2}} d v=\left.\frac{G M_{E} m}{\pi}\right|_{R_{E}} ^{3 R_{E}}=G M_{E} m\left(\frac{1}{3 R_{E}}-\frac{1}{R_{e}}\right) \\
& \\
& =-\frac{2}{3} \frac{G M-m i n}{R_{E}}=-\frac{2}{3} m g R_{E}
\end{aligned}
$$

$$
\begin{aligned}
m & =808 \mathrm{~kg} \\
w & =-\frac{2}{3} \times 80 \times 981 / R_{E} \\
& =-3.34 \times 10^{9} \mathrm{~J}
\end{aligned}
$$

Lecture 12, Blackboard \#6

