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Goals: 

 To explore the electric potential surrounding two equally and oppositely charged 

conductors 

 To identify equipotential surfaces/lines 

 To show how the electric field and electric potential are related 

Equipment: 

 25-V AC transformer 

 Digital multimeter (DMM) 

 Tray filled with water 

 Plastic graph sheet 

 Electrodes 

Introduction: 

Depending upon the situation at hand, we sometimes find it convenient to think about 

electrostatic phenomena in terms of electric fields and electric potentials. These two concepts are 

intimately related, and we will explore both of them in this lab exercise. 

 

The electric field is defined to be the force per unit charge at a given point in space. The way we 

think about measuring the electric field is to take a very small positive test charge, q0, and 

measure the force on it due to the source charges around it. At each point P in space, we measure 

the force on our test charge, and then simply define the electric field to be the force exerted on 

our test charge divided by q0: 
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A force is always a vector quantity, and so the electric field must also be a vector quantity. 

 

Now, we can turn this equation around and ask a different question. If we suppose that we 

already know, at a given point P in space, what the magnitude and direction of the electric field 

there is, what force would a charge q experience if it were placed at that point? From the 

definition of the electric field in Eq. 1, we see that at any point in space 
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To summarize, Equation 1 tells us how to measure the electric field at a point in space: we 

simply measure the force exerted on a test charge, and divide the force vector by that charge. 

Equation 2, then, tells us how to find the force exerted by an electric field on a charged particle: 

we simply multiply the electric field vector by the amount of charge on our particle. 
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Using the methods described above, we could find the electric field created by a single charged 

particle. For a single source charge q, the magnitude of the electric field around it is given by 
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where r is just the distance from the source charge q to the point in question. For the direction of 

the electric field, we have a simple rule: the electric field due to a point charge always points 

directly away from a positive charge and always directly toward a negative charge. In the event 

that there are multiple source charges present, then we can find the net electric field at a 

particular point in space by finding the vector sum of the electric fields at that point due to each 

individual charge. 

 

 

Now, Equations 1–3 provide us with enough information to determine the forces between any 

number of charges in the universe. Combined with Newton‘s second law ( amF


), we should 

be able to calculate how the charges will move due to these interactions. As was the case in 

classical mechanics, however, we often find that we can understand these interactions more 

simply if we set aside forces & kinematics and focus our attention instead upon energy and 

energy conservation. Energy comes in many forms, and the form of interest to us here is 

potential energy, U. Because the electric force is a conservative force, we can define a potential 

energy associated with the interaction between different charged particles. For instance, two 

oppositely charged particles will be strongly attracted to each other when they are close together. 

You can increase their potential energy by pulling them apart (you must do work in this 

process). When you let the charges go, they will accelerate toward each other, and their potential 

energy will decrease while their kinetic energy increases.  

 

So, we‘re interested in discussing the electrical potential energy associated with systems of 

charged objects. To make matters simpler, we‘re going to play a similar game we played with the 

electric field.  The electric field, again, is the force per unit charge that a test charge experiences 

at a particular point in space. We will now define the electric potential difference, ΔV, to be the 

difference in electric potential energy per unit charge that a test charge q0 would have between 

two particular points in space. In contrast with the electric field, the electric potential is a scalar 

quantity (like temperature, it only has a magnitude, but no direction associated with it.) So, in an 

equation form, the electric potential difference ΔV between two points in space is defined by 
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We can again reverse our point of view: if we suppose that we already know what the electric 

potential at every point in space is, then we would know how much potential energy a charged 

particle would gain or lose if we moved it from one point to another: 

 VqU q of . (Eq. 5) 

 

Much as we asked what the electric field created by a single charge is, we can now ask what the 

electric potential around a single charged particle is. We find that it is simply 
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You may recall from an earlier physics course that we can choose any point(s) we want to be the 

location where the potential energy is zero. We almost always find it convenient to say that the 

potential energy is zero when very, very far away from any source charges (i.e., at infinity). This 

convention has been used to come up with the expression for Eq. 6. Because of this convention, 

the potential around a source charge has a positive value if the source charge is positive, and a 

negative value if the source charge is negative. When there are multiple source charges present, 

we simply find the total electric potential at a point in space by adding together (paying attention 

to the sign) the potentials due to each individual charge at that point in space. 

 

So, the electric field is defined to be the force per unit charge, and the electric potential is defined 

to be the potential energy per unit charge. Because of the relationship between forces and their 

associated potential energies, we have a very powerful relationship between the electric field and 

the electric potential, namely: 
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which tells us that the electric field is directly related to the rate of change of the electric 

potential from point to point in space. The more drastically the electric potential changes from 

one point to another, the greater the magnitude of the electric field pointing along that 

displacement. Conversely, if the electric potential doesn‘t change at all from one point to another 

(i.e., the electric potential is constant), then the electric field cannot point in the direction of that 

displacement at all (we could say that the component of the electric field in that direction must 

be zero.) This is at the heart of the notion of an equipotential line or surface, which you will be 

exploring today. 

 

To be specific, the line connecting different points that are all at the same electric potential is 

known as an equipotential line. From Equation 7 and from the discussion above, we can see that 

the electric field must never point along an equipotential line. In other words, the electric field 

will always be perpendicular to an equipotential line. The negative sign in Eq. 7 tells us that the 

electric field always points in the direction of decreasing electric potential. 

 

In today‘s lab activity, we will be interested in seeing how charged objects affect the space 

around them. To do so, we often wish to create a figure or an image which illustrates all the 

available information about the charges and the space around them. We typically draw electric 

field lines to tell us about the electric field around the charges. At any point along a field line, 

the electric field must be tangent (aligned) with the field line. The arrows give us an indication of 

the direction of the field. Where the field lines are closer together, the electric field is stronger. 

Where the field lines are spread widely apart, the electric field is relatively weak. So, we can 

convey a lot of information simply by indicating the location of a charge and drawing several 

field lines around it. 

 

We can also convey complementary information by simultaneously drawing the equipotential 

lines around our charges. (Again, the equipotential lines are lines which connect different points 

in space that are all at the same electrical potential V.) In Figure  below, we show several 

examples of different configurations of charges and how their electric field line/equipotential line 

diagrams should appear. 
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Figure 1 Electric field line and equipotential line diagrams for several different systems of charges. Electric field 

lines are depicted with a bold line with arrows indicating the direction of the electric field. The equipotential lines 

are depicted by the fainter line.  Top-left: A single, isolated particle with a charge −q. Top-right: A single isolated 

particle with charge +2q. Bottom-left: Two positive charges both with charge +q, separated by a small distance along 

the horizontal axis. Bottom-right: Two particles, one with charge +q, the other with a charge −q, separated by a 

small distance along the horizontal axis. Note that in all four of these diagrams, the electric field lines are always 

perpendicular to the equipotential lines. 

 

These are the major features of our field and potential models of static electricity. On top of this, 

we‘ve also explored how some materials behave differently in the presence of charges, and 

created two general categories of materials: insulators, which do not allow charges to move 

easily through or along them, and conductors, which do easily allow charges to flow through or 

along them. This defining property of conductors has some special consequences in terms of our 

field and potential models: 

 Excess charge placed on a conductor moves to the exterior surface of the conductor, 

almost instantaneously. 

 The electric field inside a conductor in electrostatic equilibrium is zero. 

 Electric field lines meet the surface of a conductor in equilibrium at right angles. 

 Every point on or within a conductor in equilibrium is at the same electric potential. 

 

The last two observations about conductors will play a role during the activities and analysis of 

today‘s lab. 
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Name: ____________________________ Sect.: _______ 

Name: ____________________________ Name: ____________________________ 

 

Directions: 

Set up the apparatus as in Figure 2 below. The plastic graph sheet should be on the bottom of the 

tray, and the tips of the electrodes should touch the plastic sheet (not the tray itself). Fill the tray 

with water (if it is not already filled). Arrange the tips of the electrodes so that they rest at 

different points along the same bold horizontal line (which you can now call your x-axis). For the 

sake of convenience, you‘ll probably want to arrange the tips of the electrodes so that they each 

sit at distinct bold vertical lines. 

 

Figure 2 Setup used to determine the electric potential around two equally but oppositely charged conductors 

 

If it is not already connected, connect each electrode to a different terminal of the transformer. 

For our purposes, we can think of the transformer as simply serving to keep a steady and reliable 

charge on each electrode. Connect the black lead of the digital multimeter (DMM) to one 

terminal of the transformer and use the red lead as a probe to measure the potential.  Set the 

DMM to read AC on the 200-V scale. 

 

You will be using this DMM to measure potential differences between points. Recall that we 

can only measure differences in the electric potential, and not the electric potential itself. When 

used this way, the DMM acts as a voltmeter, a device which measures the potential difference 

between the tips of its probes. In other words, the DMM (assuming the probes are connected in 

the standard way) will display the value of ∆V = Vred − Vblack, as measured in the standard S.I. 

unit of electric potential, volts.  

 

Now, we have decided to connect the black probe of our DMM to the same terminal of the 

transformer as one of the electrodes. By placing the black probe in electrical contact this 

terminal, it will be at the same electrical potential as that terminal (and any other conductor in 

contact with it). This happens because charges are free to move across two conductors in contact, 

effectively making them behave as one larger conductor. We also stated that every point on or 

within a conductor in equilibrium must be at the same potential. Combining these observations, 

25-V 

AC 

DMM 
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we see that the black lead must be at the same potential as the transformer terminal it is in 

contact with. 

 

Again, the DMM only measures the potential difference ∆V = Vred − Vblack. So, if we place the red 

probe in contact with the same electrode to which the black probe is connected, the meter should 

show no potential difference (a voltage of ‗0‘) — you should verify this for yourself. At any 

other point, the red probe will measure the electric potential relative to the electric potential at 

the black probe. In this way, we will use the red probe to map the electric potential at any point 

we wish around both electrodes. 

Activity 1: Plotting the equipotential lines 

1. You will be measuring the electric potential at particular points in the water-filled tray, and 

then recording these values on a similar piece of graph paper (found as the last page of this 

lab). To begin, first indicate on your graph paper where the electrodes are located. 

 

2. Place the red probe halfway between the two electrodes (on your x-axis), and record its 

position and the electric potential at that location on your graph paper. 

 

3. Now place the probe a few centimeters away from your first point along a vertical gridline, 

and move the probe around until the potential is the same as in step 2.  This is a second point 

on the equipotential line. Record its location on your graph paper.   

 

4. Continue to move the probe a few centimeters at time, finding points that have the same 

potential as in step 2, and recording the location of these points on your graph paper. Be sure 

to move your probe to points above and below your x-axis. Once you have enough points to 

have a good idea of how the equipotential line looks, you can stop recording points for this 

line. 

 

Figure 3 Graph paper after plotting one equipotential line 

5. On your graph paper, draw your best estimate of what the equipotential line for this value of 

the electric potential looks like. You should not just ―connect the dots:‖ if it looks like the 

equipotential line curves a bit, you should try your best to draw a smoothly curving line. Be 

sure to label the equipotential line with the value of the potential along that line. At this 

point, your graph paper should probably look something like Figure 3. 
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6. Now, follow essentially the same procedure as outlined in steps 3–5 above for at least six 

more equipotential lines, each with a different value of the electric potential. Your goal is to 

have a reasonably accurate ―map‖ of the equipotential lines throughout the region between 

and around the electrodes. 

 

7. As was discussed in the introduction, electric field lines should always be perpendicular to 

equipotential lines. In another color of pen or pencil (if available), draw at least five electric 

field lines on your graph paper and be sure to draw arrows to indicate the direction of the 

electric field somewhere on each line. 

 

Analysis 

Q1. If we assume that the two electrodes in our experiment each have a static (non-changing) net 

charge on them, how could you use your plot of equipotential lines to determine which electrode 

is more positively charged? 

 

 

 

 

Q2. Suppose you placed an electron (q = −1.60 × 10
−19

 C) at a random point on one of your 

equipotential lines. How much work would it require to push that electron 10 cm, precisely along 

that equipotential line?  

 

 

 

 

Q3. Suppose you instead decide to move a single electron from the ―positive‖ electrode to the 

other electrode. Does the amount of work required to push the electron depend upon what path 

you choose to go between the two electrodes? Why or why not? 

 

 

 

 

Q4. Now estimate (based on your actual data) how much work would be required to move an 

electron from the ―positive‖ electrode to the other.  
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Q5. Which of the following can actually be physically measured: the value of the electric 

potential at a point in space, or the difference in the electric potential between two points in 

space? Explain your response. 

 

 

 

 

 

 

Q6. When viewed from above, your two conducting electrodes had circular cross-sections where 

they intersected the water. Suppose that the electrodes you used were replaced by different 

electrodes which had cross-sections like those shown below. Sketch what the electric field and 

equipotential lines would look like for these electrodes. 

 

 

 

 

Figure 4 Alternate conducting electrodes 
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